Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Chromatogr A ; 1717: 464685, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310700

RESUMO

This study contributes to the renewed interest in the study of nonlinear electrophoresis of colloidal particles. In this work the influence of cell shape on electrophoretic migration under the nonlinear regimes of moderate and strong field regimes was assessed. Four types of bacterial and yeast cells (one spherical, three non-spherical) were studied and their electrophoretic mobilities for the moderate and strong electric field magnitude regimes were estimated experimentally. The parameter of sphericity was employed to assess the effect cell shape on the nonlinear electrophoresis migration velocity and corresponding mobility under the two electric field magnitude regimes studied. As particle migration under nonlinear electrophoresis depends on particle size and shape, the results in terms of mobilities of nonlinear electrophoresis were presented as function of cell hydrodynamic diameter and sphericity. The results indicated that the magnitude of the mobilities of nonlinear electrophoresis for cells increase with increasing cell size and increase with increasing deviations from spherical shape, which is indicated by lower sphericity values. The results presented here are the very first assessment of the two types of mobilities of nonlinear electrophoresis of cells as a function of size and shape.


Assuntos
Eletricidade , Hidrodinâmica , Forma Celular , Eletroforese/métodos , Tamanho da Partícula
3.
ACS Omega ; 6(9): 6153-6162, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718706

RESUMO

Solid adsorbents with precise surface structural chemistry and porosity are of immense interest to decode the structure-property relationships and maintain an energy-intensive path while achieving high activity and durability. In this work, we reported a series of amine-modified zeolites and their CO2 capture efficiencies. The amine impregnated molecular zeolite compounds were characterized and systematically investigated for CO2 adsorption capacity through thermogravimetric analysis for the occurrence of atmospheric pure CO2 gas at 75 °C with diethylenetriamine (DETA), ethylenediamine (EDA), monoethanolamine (MEA), and triethanolamine (TEA)-loaded zeolite 13X, 4A, and 5A adsorbents. The kinetics of the adsorption study indicated that the adsorption capacity for CO2 adsorption was improved with amine loading up to a certain concentration over 13X-DETA-40, showing an adsorption capacity of 1.054 mmol of CO2 per gram of zeolite in a very short amount of time. The result was especially promising in terms of the initial adsorption capacity of zeolite, which adsorbed approximately 0.8 mmol/g zeolite within the first two minutes of experimentation. A detailed flow chart that includes a brief look into the process adopted for adsorption was included. Lagergren pseudo-first- and pseudo-second-order models of 40 wt % DETA zeolite 13X gave CO2 adsorption capacities of 1.055 and 1.058 mmol/g and also activation energies of 86 and 76 kJ/mol, respectively. The CO2 adsorption capacity of 13X-DETA-40 in a lab-scale reactor was found to be 1.69 mmol/g. A technoeconomic study was conducted for the solid amine zeolites to understand the investment per ton of CO2 adsorbed. This study was used as a basis to improve cost estimates from a microscale to a lab-scale reactor. The cost of investment for 13X-DETA-40 was reduced by 84% from $49,830/ton CO2 adsorbed in a microscale reactor to $7,690/ton of CO2 adsorbed in a lab-scale reactor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...